Supernova Remnants

Nucleosynthesis &

Particle Acceleration

Jacco Vink

Astronomical Institute, Utrecht University

Contents

- 1. Supernova & Supernova Remnant Types
- 2. Collisionless Shocks & Supernova Remnant Evolution
- 3. Thermal X-ray Emission from Supernova Remnants
- 4. An Application of what we have learned
- 5. Non-equilibration of Temperatures
- 6. Cosmic Ray Acceleration by SNR shocks
- 7. Nucleosynthesis products observed in X-rays
- 8. Nucleosynthesis products observed in γ-rays

The importance of supernovae & their remnants

- SNe important as source of chemical enrichment: almost all elements Z>8 come from supernovae
- SNe/SNRs provide energy (heating/turbulence) to the ISM, important for star formation
- SNRs considered to be the most important source of cosmic rays up to energies of $\sim 10^{15} \text{eV}$
- Type Ia are used as cosmological "standard candles": their remnants may provide useful insights into their nature
- The explosion mechanism of core collapse SNe is poorly understood: SNRs may provide new insights
- SNR shocks are sites of interesting physics: collisionless shock heating, particle acceleration

Chapter 1

Supernova &

Supernova Remnant Types

SN1987A

(23 Februari 1987)

Two Historical SNRs

SN1572 SN1604 Chandra Tycho Brahe Johannes Kepler

SN1006

Size: 30'

The size of the full Moon

Historical brightness
-6 mag, perhaps -9 mag

Supernova light curves

Tail of light curve caused by heating by nuclear decay (especially 56 Ni(8.8d) \rightarrow 56 Co (111d) \rightarrow 56 Fe)

SN1987A
(a "weak" SN)

SN1992A, SN1994D, SN1996X

Supernova Spectra

After 1 week

After 5 months

There are different types of supernovae Only Type II have hydrogen

Supernova types and host galaxies

Spiral galaxies:

Host all types of SNe Stellar population: a mix of old and young

M49

Elliptical galaxies:

Only Type Ia

Stellar population: old

The Galaxy: +/- 2 supernovae per century

Supernova classification

Thermonuclear Core collapse explosion of massive star deflagration/ Supernova Classification creation of NS/BH detonation of White Dwarf Type I Type II (no hydrogen) (hydrogen) Subclasses No Si based on light curves Type Ia Type IIb (He rich) Type IIL Type III Type Ib ype Ic (No Si & He) (No Si, He) (Linear LC) (Plateau LC)

Which stars do become supernovae?

Massive stars > 7 Msun

Main Seq. Red Super Giant Phase

Very Massive stars > 22 Msun Wolf-Rayet Stars

Supernova!

Stars < 7 Msun

Red giant

Planetairy Nebulae White dwarf

Nuclear fusion processes (occuring during stellar evolution and explosion)

```
Helium burning (T = 0.2 \times 10^9 \text{ K})
         3 \times {}^{4}\text{He} \rightarrow {}^{12}C + \gamma (triple alpha reaction)
      ^{12}C + ^{4}He \rightarrow ^{16}O + \gamma
Carbon burning (T = 2 \times 10^9 \text{ K})
        ^{12}C + ^{12}C \rightarrow ^{20}C + ^{4}He
Neon burning (T = 2 \times 10^9 \text{ K})
         ^{20}Ne + \rightarrow ^{16}O + ^{4}He
Oxygen burning (T = 3.6 \times 10^9 \text{ K})
        ^{16}O + ^{16}O \rightarrow ^{28}Si + ^{4}He
Silicon burning (T = 5 \times 10^9 K)
       ^{28}\text{Si} + ^{4}\text{He} \rightarrow ^{32}\text{S}
       ^{32}S + ^{4}He \rightarrow ^{32}Ar ,etc.
  Most important product <sup>56</sup>Ni
  (radio-active: ^{56}Ni + e^{-} \rightarrow ^{56}Fe)
```


Solar abundance pattern

Sunavaova Dammante. Nucleograthesis & Dantiele Acceleration

Igggo Vink

Neutrino detection

$$n + e^+ \rightarrow p + v_e$$

 $p + e^- \rightarrow n + v_e$

Kamiokande detected
12 neutrinos on Feb. 23 1987
from SN1987A:
Confirmation of the neutron
star creation theory!

FIG. 2. The time sequence of events in a 45-sec interval centered on 07:35:35 UT, 23 February 1987. The vertical height of each line represents the relative energy of the event. Solid lines represent low-energy electron events in units of the number of hit PMT's,

Kamiokande

Standard hypothesis for Type Ia SNe

Accreting C/O white dwarf

Steady mass accumulation (need to avoid nova explosions)

Explodes when a critical density is reached (near $1.4 M_{\odot}$)

Dominant nucleosynthesis product ⁵⁶Ni (radio-active) ~ 0.7 M_☉

Two types of supernovae: very different sources of energy

Fundamental differences between Type Ia and core-collapse supernovae:

- Type Ia:
- The whole star is disrupted by the explosion
- -The source of energy is nuclear fusion, predominantly the burning of C/O into ⁵⁶Ni
- -Most of the energy is in the form of heat (10^{51} erg)
- Type II/Ibc: -The core of the star collapses into a neutron star
 - -The source of energy is therefore gravity
 - $(\sim {\rm GM^2/R_{NS}} \sim 10^{53} {\rm erg})$
 - -Most of the energy released as neutrinos!
 - -Only 1% converted to heat/kinetic energy!
 - -Nuclear fusion: by-product/not source of the explosion

Supernova vs Supernova Remnants Types

Shell Types: Shell of shock heated gas

Type Ia supernova Shell Type SNR

Core-collapse supernova (Type Ib) Shell Type SNR

Supernova vs Supernova Remnants Types

Pulsar Wind Nebula (PWN) dominated SNR or <u>Plerions</u> PWN: X-ray synchrotron emission from relativistic electrons

Crab nebula

Core-collapse supernova Plerion

Core-collapse supernova Composite (pwn+shell)

The role of the neutron star

The appearance of a supernova remnant depends:

- The interstellar/circumstellar medium: density, clouds
- The supernova type:

 Type Ia → shell type remnant
- Core-collapse SNR morphology depends on stellar remnant: Black Hole (?), weak neutron star → shell type remnant energetic pulsar → large pulsar wind nebula with shell crab nebula → something special (?):

energetic pulsar, but no shell (weak explosion?)

CTB 109:

Asymmetric: one sided cloud interaction

Not a plerion, but bright point source: a magnetar

Nucleograthesis & Dantiele Acceleration

Igggo Viul

Chapter 2

Collisionless shocks, &
Supernova Remnant Evolution

SNR Shocks

- Whenever matter moves through a medium with a speed higher than the sound speed a shock forms
- The shock consists of a sharp boundary (1 ~ atom free mean path) over which temperature increases
- The plasma is very tenuous (1 particle/ cm³)
- Hence, not many colliding particles:
 mean free path for Coulomb collisions > size of shell
- Hence, the name collisionless shocks
- Instead particles are heated by plasma waves
- Behind shock: few collisions, atoms not immediately ionized

Shocks

• Conservation laws: mass, momentum and energy conservation: Use system in which shock is at rest

$$\rho_1 v_1 = \rho_2 v_2$$

$$(\rho_1 v_1) v_1 + p = (\rho_2 v_2) v_2 + p$$

$$(1/2\rho_1 v_1^2 + u) v_1 = (1/2\rho_2 v_2^2 + u) v_2$$
internal energy $u = p/(\gamma - 1)$, $\gamma = 5/3$ for monatomic gas

- •Simplification: heat sinks (cosmic ray acceleration!), magnetic fields, and radiation losses not taken into account.
- •For strong shocks (M $\rightarrow \infty$) one finds: $\rho_2/\rho_1 = (\gamma+1)/(\gamma-1) = 4, \text{ implying } v_2 = 1/4v_s$ $kT_2 = 2(\gamma-1)(\gamma+1)^{-2} \text{ m } v_s^2 = 3/16\text{m } v_s^2, \text{ with m particle mass}$
- Should one consider different temperatures for each particle? Or can we take the average $m = 0.6 m_p$?

Sketch of shock structure

The Evolutionary Phases of SNRs

Traditionally four evolutionary phases are recognized.

- I Free expansion phase: $M_{ejecta} > M_{swept}$ $V_s = R_s/t$
- II Adiabatic phase (no radiation losses), also called Sedov phase:

$$M_{ejecta} < M_{swept}$$

 $V_s = 2/5 R_s/t$ (ISM)
 $V_S = 2/3 R_s/t$ (CSM)

III Radiative losses important, no conservation of energy, conservation of momentum.

Characterized by bright optical emission IV Dissapearance phase $V_{shock} \rightarrow V_{sound}$

These are useful terms to speak about SNRs, But reality often more complicated!

The Structure of Young SNRs

- After supernova explosion gas cools adiabatically due to expansion
- May lead to dust formation
- Fastest material shocks CSM/ISM
- Hot shell forms with high pressure
- High pressure causes a shock into the freely expanding ejecta:

 The *Reverse Shock*
- So young SNRs have two shocks:
 - 1. Forward shocks heating ISM/CSM
 - 2. Reverse shock heating ejecta

Self-similar model by Chevalier (1982)

The Reverse Shock in Cas A

Gotthelf et al. 2001

Curamova Dammante Nucleacouthasis & Dantiela Acceleration

Lagge Vint

Forward & Reverse Shock Evolution

Truelove & Mckee models for evolution

Connects smoothly the free expansion with Sedov phase

Note the reverse shock trajectory: Moves outward and then inward, eventually reaching the center

Truelove & McKee (1999)

The Sedov Evolution Model

Energy conservation implies: $E_{tot} = Volume (u + 1/2 \rho v_2^2)$ Recall $kT_2 = 2(\gamma-1)(\gamma+1)^{-2} m v_s^2$, write $u = \rho T = \alpha \rho (dR_s/dt)^2$

Assume thin shell with Volume = $f 4\pi/3 R_s^3$, velocity $v_2 = \beta dR_s/dt$

Rewrite the energy equation as

$$4\pi/3 \text{ f R}_s^3(\alpha + 1/2 \beta) \rho (dR_s/dt)^2 = E_{tot}$$

Absorbing all constants (same for all SNRs) into one constant K we get

$$K R_s^3 \rho (dR_s/dt)^2 = E_{tot}$$

 $R_s^{3/2} dR_s/dt = (K^{-1} E_{tot}/\rho)^{1/2}$

Sedov solution $R_s = (K' E_{tot} t^2 / \rho)^{1/5} (K'=2.026)$ $V_s = 2/5R_s/t$

Chapter 3

Thermal X-ray Radiation from Supernova Remnants

The Nature of the Thermal X-ray emission

Recall: $kT_2 = 2(\gamma - 1)(\gamma + 1)^{-2} \text{ m v}_s^2 = 3/16 \text{ m v}_s^2$

Typically shock velocities are

- 5000 km/s for young SNRs,
- 200 km/s for old SNRs (radiative phase)

We have: $kT = 1.1 (v_s/1000 \text{ km/s})^2 \text{ keV}$,

Temperatures as high as 25 keV are expected (but not observed!)

Radiation expected:

- For a size of 10 pc and n=1 cm⁻³, we have $N_H < 10^{20} cm^2$
- Radiation must therefore be optically thin
- Continuum process: mostly bremsstrahlung
- Additional processes: free-bound emission, two photon continuum
- Dominating radiation: line radiation

A Typical X-ray Spectrum (Cas A)

A High Resolution Spectrum

LMC SNR 0519-69 (Type Ia remnant)

Chandra

XMM-Newton Reflection grating (RGS)

The Ionization Balance

What determines the ionization state of an atom in a hot gas?

- Ionization rate
- Recombination rate (direct + dielectronic recombination)
- Ionization balance (coupled differential equations):

$$dN_{i}/dt = + n_{e} C_{r}(T,i+1) N_{i+1} + n_{e} C_{i}(T,i-1) N_{i-1}$$

$$- n_{e} C_{r}(T,i) N_{i} - n_{e} C_{i}(T,i) N_{i}$$

with n_e electron density,

C_r/C_i recombination/ionization rate coefficients (σ v_e)

- For equilibrium ionization demand $dN_i/dt = 0$ (Collisional Ionization Equilibrium, CIE)
- Density in SNRs so low that $dN_i/dt \neq 0$ (i.e. SNR characterized by Non Equilibrium Ionization, NEI)
- In what state it is depends on $n_e t (\approx \int n_e dt)$
- Typically needed for equilibration: $n_e t = 10^{12} \text{ cm}^{-3} \text{s}$

The Effects of NEI

- One observes lines from ion states that in CIE indicate a lower kT
- I.e. a mismatch between continuum and ionization "temperature"
- Since hot electrons co-exist with low ionization states one has more "inner shell ionizations", resulting in different line energies
- After determining n_e one can estimate a rough age from n_et

CIE situation

NEI situation inner shell ionization

Non-Equilibrium Ionization (NEI)

Ionization state depends on kT and n_et

An (ionization) age sequence LMC Type Ia remnants

green = FeI

SNR 0509-67.5

SNR 0519-69

DEM L71

Warren et al. 2004 Vink, et al. (in preparation)

Rakowski et al. 2003 van der Heyden et al. 2003

(Chandra images/XMM-RGS spectra)

Cunamana Dammante. Nucleacounthesis & Dantiela Acceleration

Inggo Vint

Chapter 4

An application of what we have learned sofar

Determining the explosion energy An application of what we have learned

Remember the following equations

- •Shock physics: $kT_2 = 3/16 \text{m v}_s^2$ (1)
- •Sedov solution: $R_s = (2.026 E_{tot} t^2/\rho)^{1/5}), V_s = 2/5R_s/t$ (2)
- •To determine density, use the emission measure: $\int n_e n_H dV$ (3) (determines spectral normalization, see e.g. xspec)

To determine energy:

- Measure R_s (X-ray image) and kT (spectrum) $\rightarrow V_s \rightarrow (2)$ t (age)
- From emission measure and volume $\rightarrow \rho \rightarrow (2) E_{tot}$
- System overdetermined: $\rho + n_e t \rightarrow independent measurement of t$

The Energy of N49 and Kes 73

Both SNRs contain a magnetar: SGR0526-66, 1E1841-045

Vink & Kuiper astro-ph/0604187

Why you should care about their Energy

- According to one theory (Duncan & Thompson 1993) magnetars form through magnetic field generation inside a rapidly spinning neutron star ($P \sim 1 \text{ ms}$)
- Rotational energy for P = 1 ms, $E > 10^{52}$ erg
- Magnetic braking then very fast (100-1000 s)
- Energy injected into supernova ejecta → hypernova
 (e.g. T. Thompson et al. 2005)
- Alternative theory:
 magnetars form from high magnetic field progenitors
 (e.g. Ferrario & Wickramsinghe 2006)

Kes 73/1E1841-045

- Spherical morphology
- Distance \sim 6-7.5 kpc (HI abs.)
- Radius = 4 pc
- Spin down age: 4500 yr
- Spectral modeling:
- $-kT = 0.7 \text{ keV} \rightarrow V_s = 800 \text{ km/s}$
- $-n_e t = 4x10^{11} cm^{-3} s$
- $-n_{\rm e} = 4 {\rm cm}^{-3}$
- $\text{ mass} = 29 \text{ M}_{\text{sun}}$
- no overabundances

$$E_0 = (0.5\pm0.3) \times 10^{51} \text{ erg}$$

 $t = 1300\pm100 \text{ yr}$

N49/SGR 0526-66

• Non-spherical, SNR-cloud interaction

(e.g. Park et al. '03)

- Distance ~ 50 kpc
- Radius = 10 pc
- Spindown age: 1900 yr
- Connection SGR/SNR requires ~1000 km/s kick (Gaensler et al '01)
- Spectral modeling indicates:
- $-kT = 0.5 \text{ keV} \rightarrow V_s = 700 \text{ km/s}$
- $n_e t = 4x10^{11} cm^{-3} s$
- $-n_{\rm e} = 3 \, {\rm cm}^{-3}$
- mass = $320 M_{sun}$
- no overabundances

$$E_0 = (1.3\pm0.4) \times 10^{51} \text{ erg}$$

 $t = 6300\pm2000 \text{ yr}$
(see also Hughes et al. '98)

Conclusion for Kes 73, N49

- Creation of magnetar did not result in hypernova!
- Supports theory of high magnetic field progenitor
- However, if internal magnetic field high $> 5 \ 10^{16} G$ and surface field low $< 10^{14} G$
 - NS deformation may result in strong gravitational waves: energy loss without imprint on SNR (Stalle et al. 2005)
 - (Stella et al. 2005)
- Does require lower B-field than currently observed

Chapter 5

Non-Equilibration of Temperatures

What is temperature?

- Temperature = the mean kinetic energy of the gas particles
- We speak of non-equilibration of temperatures
 - if the mean temperature of each type of particle (proton, electron, other ions) is different
 - or if the energy distribution is non-Maxwellian
- For shock heating, conservation of mass, momentum, energy demands (non-equilibration): kT_{e,p,i}=2(γ -1)(γ +1)⁻² m_{e,p,i}, $v_s^2 = 3/16$ m_{e,p,i} v_s^2 (for γ =5/3). Question: do plasma waves (collisionless shocks)
- give rise to equilibration or not?
- For equilibration we replace $m_{e,p,i}$, by $< m > \sim 0.6 m_p$
- $dE_{pe}/dt \propto n_e T^{-3/2}$ implies a time scale $n_e t$

Temperature Non-equilibration

Simplified plane parallel shock model, no equilibration:

Is this the reason that no SNR has been observed with $kT_e \sim 25 \text{ keV}$?

How do we measure temperatures?

- X-ray continuum (bremsstrahlung) and line ratios: gives only *electron* temperature
- Most of internal energy taken up by ions (protons)
- Measuring ion temperature: thermal line broadening
 Problem: lines also broadened by bulk plasma motion
- Solution: measure line broadening at edge of remnant
 - → bulk motions only in line of sight (no Doppler effect)
- Measurements of ion thermal line broadening done in:
 - optical from H-alpha (Raymond, Chevalier, Smith, Ghavamian c.s.)
 - UV (Raymond et al. 1996, Korreck et al. 2004)
 - X-ray with XMM-Newton (Vink et al. 2003)

Non-radiative Hα emission (a short digression to other wavelengths)

Radiative Ha Emission

- For temperatures <10⁶K rapid cooling
- Meaning: rapid cooling for low Vs
- Runaway cooling: optical emission
- Bright Hα filaments

Non-radiative Hα Emission

- Partial neutral medium
- Brief moment (~1 month) hydrogen atoms remain neutral inside shocked region
- Line emission due to two processes:
 - 1. excitation \rightarrow narrow H α
 - 2. charge exchange \rightarrow broad H $\alpha \rightarrow$ direct measurement of proton kT (electrons switches from hot proton to cool H)

Raymond et al. '76

Examples: Cygnus Loop

Non-radiative Hα filament (Blair et al.)

RCW 86 (SN 185?)

A combination of radiative (bright) and non-radiative shocks

(Rad)

(Rad)

(Rad)

(N II)

6520

6540

6560

6580

6600

Wavelength (Å)

A radiative/non-radiative spectrum (Long & Blair 1990)

Non-radiative spectrum (Ghavamian et al. 2003)

Measuring Thermal Doppler Broadening: SN 1006

Why SN1006?

- Low density (0.1 cm⁻³), young (~1000 yr) \rightarrow low n_et (~3x10⁹ cm⁻³s)
- Likely to be far out of equilibrium
- Can't measure proton, use O VII instead
- Ion broadening more extreme for low net
- Young SNR → Fast shock, more broadening
- Large SNR (30 arcmin), easier to isolate shock front

Observing SN1006 with XMM-Newton's Reflective Gratings

- Two reflective gratings
- No slit, spectral degradation:

 $\Delta \lambda = 0.124 (\Delta \phi/1') \text{ Å}$

Cunamana Dammanta Nucleaconthesis & Dantiela Acceleration

Laggo Vint

XMM-RGS High Resolution Spectroscopy

Knot size ~ 1 arcmin (0.4 arcmin FWHM) Spectral resolution for bright lines e.g OVII (~22Å): ~ 1/170

SN 1006 Slow temperature equilibration

Vink et al. 2003

EPIC (CCD) spectra

Constraining NEI

SN 1006 Slow temperature equilibration

Equilibration versus Shock Velocity

The End of Lecture 1

